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As an example of the skyrmion lattice, the structure of Mermin-Ho vortex lattice in superfluids 3He is
studied by self-consistent Eilenberger theory and by Bogoliubov-de Gennes theory. We identify how the
intrinsic orbital angular momentum l of p-wave Cooper pairs contributes to spatial structures of the pair
potential, current flow, and quasiparticle states. There are two types of vortices depending on the l direction
relative to rotation. Only one of them has zero-energy bound states appearing even in coreless vortices due to
intrinsic topological reasons.
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I. INTRODUCTION

Skyrmion is one of the emergent topological objects, ex-
emplified by monopole, meron, or hedgehog, encompassing
a wide range of research fields from particle physics1 to
condensed-matter physics.2–4 The low-lying Fermionic exci-
tations associated with the localized topological objects play
a major role in governing the physical behaviors which re-
flect those topological nature. In the condensed-matter con-
text skyrmion usually forms a periodic lattice, as shown in
Fig. 1�a�, to be detected by a macroscopic observation. Ex-
cept for a few example such as recent clear observation of
remarkable skyrmion lattice in a weak itinerant ferromagnet
of MnSi and Fe1−xCoxSi under a magnetic field,5,6 there is
not much concrete system accessible experimentally.

Superfluid 3He,7,8 which is a typical multicomponent
order-parameter system with p-wave pairing, provides us a
fertile research field to investigate the interplay between the
topology and the low-lying Fermionic excitations of quasi-
particles, and gains recently renewed interest because of pos-
sible existence of Majorana quasiparticle9–13 with a zero-
energy Fermionic excitation. Here we focus on the A phase
where the Cooper pairs have intrinsic angular momentum
�IAM� denoted by l vector l= �lx , ly , lz� whose direction is
degenerate in a bulk. Note that the pairing component p+
= px+ ipy �p−= px− ipy� gives positive �negative� lz. IAM
plays a fundamental role in describing the spatial structure of
quasiparticles and thermodynamic behaviors in a system.7,8

As a concrete realization of the skyrmion lattice, we con-
sider the Mermin-Ho �MH� vortex lattice and texture.14 The
MH vortices were observed in superfluid 3He A phase ex-
perimentally under rotation,15,16 and the stability of MH vor-
tex lattice was supported by theoretical studies using
Ginzburg-Landau theory.17,18 In Refs. 15 and 18, LV1
�locked vortex 1� corresponds to the MH vortex lattice. The
MH vortex is a building block embedded in the MH texture,
forming a periodic array. It has a soft core in contrast with
conventional singular hard core vortex in scalar order-
parameter phases. Since the l-vector direction can be spheri-
cally rotatable depending on positions, outside the MH vor-
tex core l vector could be directed to �x ,y� plane. The
coreless vortex structure can be formed merely by rotating
the l-vector direction by 360° around the vortex, keeping the

total order-parameter amplitude constant. At the core of the
MH vortex, l vector can be directed to +z or −z direction.

The soft core MH vortex is an interesting topological ob-
ject because the background A phase is maintained through-
out the whole system without any singular point. Yet MH
vortex is stable under rotation. The low-lying Fermionic ex-
citations associated with this remarkable MH texture are in-
triguing because they reflect faithfully and directly the un-
derlying topological structure of skyrmion lattice. Therefore
we can analyze the intimate interplay between the low-lying
excitations and topology. We uncover a generic question of

FIG. 1. �Color online� �a� Skyrmion structure of l vectors
around MH↑ at B and MH↓ at D. �b� Profiles of pair potentials;
��+�r�� for p+ component, ��−�r�� for p− component, ��z�r�� for pz

component, and pair amplitude ���r�, obtained by self-consistent
Eilenberger theory. �=0.004�0 and T=0.9Tc. �c� Unit cell of
Mermin-Ho vortex lattice, including four vortices. MH↑�MH↓� vor-
tices with lz�0 �lz�0� are located at positions A and B �C and D�.
u1−u2 and u2 are unit vectors. Horizontal axis in �a� and �b� is
along the dashed line in �c�.
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the presence or absence of the vortex bound state in multi-
component superfluids with a higher orbital pairing p�,
which could realize the time reversal symmetry-breaking
pairing, and give rise to IAM. We study the interplay be-
tween the local IAM and vortex-winding number. This inter-
play yields nontrivial effects on the above question as we
will see soon.

The vortex lattice structure formed by MH vortices is un-
conventional, where the unit cell of vortex lattice contains
two positive lz vortices �MH↑� and two negative lz vortices
�MH↓�, as shown in Fig. 1�c�.7,17,18 In nomenclature in Ref.
8, MH↓ corresponds to MT �mixed-twist� vortex. It is shown
below that these two kinds of the cores exhibit completely
different low-energy excitation spectra. So far, most of the
study for the MH vortex lattice was done by phenomenologi-
cal Ginzburg-Landau theory.17,18 According to our micro-
scopic calculations based on Eilenberger theory19–22 backed
up by the full quantum mechanical Bogoliubov-de Gennes
�BdG� theory, we succeeded in uncovering the nontrivial
physical mechanism of the interplay between IAM and wind-
ing number. We note that MH vortex structures are also ex-
pected in spinor Bose-Einstein condensate in ultracold Bose
gases under rotation.3,4,23

After Sec. I, we describe our formulation by self-
consistent Eilenberger theory for MH vortex lattice in Sec.
II. We study the spatial structure of order parameter and mass
current in Sec. III, and low-energy quasiparticle states in Sec.
IV, based on the Eilenberger theory. The quasiparticle struc-
ture is examined also by BdG calculations in Sec V. The last
section is devoted to summary and discussions.

II. EILENBERGER THEORY FOR MERMIN-HO VORTEX
LATTICE

The quasiclassical Eilenberger theory is quantitatively
valid when ��1 /kF �kF is the Fermi wave number and � is
the superfluid coherence length�, and has been used in the
study of 3He superfluidity.24–27 In the clean limit, the quasi-
classical Green’s functions g�	n ,k ,r�, f�	n ,k ,r�, and
f†�	n ,k ,r� are calculated by the Eilenberger equation,19–21

�	n + v̂ · ��+ iA��f = 
g ,

�	n − v̂ · ��− iA��f† = 
�g , �1�

using the Riccati method,22 where g= �1− f f†�1/2, Re g�0,
and v̂=v /vF0.

We consider all three orbital components of the p-wave
pairing for the pair potential, as


�r,k� = �+�r��+�k� + �−�r��−�k� + �z�r��z�k� , �2�

���k� = ��3

2

kx � iky

kF
= ��3

2
sin 
ke

�i�k, �3�

�z�k� = �3
kz

kF
= �3 cos 
k, �4�

where k= �kx ,ky ,kz�=kF�sin 
k cos �k , sin 
k sin �k , cos 
k�
is the relative momentum of the Cooper pair on the spherical

Fermi surface, and r is the center-of-mass coordinate of the
pair. The l vector is given by lx=�2 Re���++�−���z� /�, ly
=�2 Im���+−�−���z� /�, and lz= ���+�2− ��−�2� /� with pair
amplitude ��r�= ��+�r��2+ ��−�r��2+ ��z�r��2.23 For simplicity,
we do not consider the spin components of the pair potential
denoted as d vector since we neglect small dipole coupling
of l vector and d vector. Therefore, the dipole length is in-
finity in our calculation. Since the Fermi surface is spherical
in 3He, the Fermi velocity is given by v=vF0k /kF. When the
rotational axis is the z direction and angular velocity of ro-
tation is �, A�r�=− 1

2 �0,0 ,���r. Throughout this paper,
length, temperature, and � are scaled by R0, superfluid tran-
sition temperature Tc, and �0, respectively. Here, R0
=�vF0 /2�kBTc, �0=�0 /2�R0

2 with circulation quantum �0
=h /2m.19 Matsubara frequency 	n= �2n+1��T, energy E,
and pair potential 
 are in a unit �kBTc. The order parameter
� j �j=+,−,z� is self-consistently calculated by

� j�r� = g0N0T �
0�	n�	cut

�� j
��k��f + f†��	k �5�

with �g0N0�−1=ln T+2T�0�	n�	cut
�	n�−1. �¯ 	k indicates the

Fermi surface average, and N0 is the density of states �DOS�
at the Fermi energy in the normal state. We set energy cutoff
of the pairing interaction as 	cut=40kBTc.

In the MH vortex lattice, a unit cell including four vorti-
ces is square,17,18 as shown in Fig. 1�c� where two MH↑ are
located at A and B and two MH↓ at C and D. Thus, we set a
unit cell as r=W1�u1−u2�+W2u2 ��Wi��0.5, i=1,2� with
unit vectors u1= �ax ,0�, u2= � 1

2ax ,ay�, and ay = 1
2ax, where

axay�=4�0. To consider the periodic boundary condition
and the initial value for the pair potential, we introduce Abri-
kosov solution which has a single vortex within a unit cell,
given as

��r� = ei�xy/axay
2ay

ax
�1/4

� �
p=−�

�

e−���y + y0�/ay + p
2ay/ax+2�i�p�x0/ax+�p/2�+�y0/ay+p�x/ax


�6�

when the vortex center is located at �x0 ,y0�− 1
2 �u1+u2�. This

has translational relation

��r + R� = ��r�ei��r,R�, �7�

��r,R� = 2��1

2
��m + n��

y

ay
− n

x

ax
�

+
mn

2
+ �m + n��

y0

ay
− n

x0

ax
� �8�

for R=mu1+nu2 �m ,n: integer�. We set �0�r ,R����r ,R�
when the vortex center is located at �0,0�. We prepare four
Abrikosov solutions with different positions of the vortex
centers. Abrikosov solution with the vortex center at � 1

4ax ,0�,
�− 1

4ax ,0�, �0, 1
2ay�, and �0,− 1

2ay� are, respectively, denoted as
�A�r�, �B�r�, �C�r�, and �D�r�. In the MH vortex lattice,17

MH↑ vortices with lz�0 at A and B in Fig. 1�c� have the
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phase winding �w+ ,wz ,w−�= �0,1 ,2� around each vortex
center, where w+ ,wz ,w− are, respectively, phase windings of
the components �+ ,�z ,�− around a vortex center. Other vor-
tices MH↓ with lz�0 at C and D have the phase winding
�w+ ,wz ,w−�= �2,1 ,0� around each vortex center. Therefore,
as the initial states for MH vortex lattice,17 we use

�+�r� = ��C�r��D�r��2,

�−�r� = ��A�r��B�r��2,

�z�r� = �A�r��B�r��C�r��D�r� . �9�

These states have the same translational relation

� j�r + R� = �i�r�e4i�0�r,R� . �j = + ,− ,z� . �10�

Starting from initial states in Eq. �9�, we solve Eqs. �1� and
�5� alternately, and we obtain self-consistent solutions of the
MH vortex lattice for �+, �−, and �z under a given unit cell
of the vortex lattice.20,21 The unit cell is divided to 82�82
mesh points, where we obtain the quasiclassical Green’s
functions and 
�r ,k�. When we solve Eq. �1� by the Riccati
method,22 we estimate 
�r� at arbitrary positions by the in-
terpolation from their values at the mesh points and by the
periodic boundary condition in Eq. �10�. In figures of this
paper, we presented the spatial structure of the MH vortex
lattice within a unit cell including MH vortices A–D as
shown in Fig. 1�c�, where we use coordinates X and Y ro-
tated by 45° from the original coordinates x and y.

Using the obtained self-consistent solutions, the mass cur-
rent is given by

j�r� = �jx, jy, jz� � T �
0�	n

�v̂ Im g	k. �11�

When we calculate the quasiparticle states, we solve Eq. �1�
with i	n→E+ i�. We typically use �=0.01, which is small
smearing effect of energy by scatterings. The local DOS
�LDOS� for quasiparticles is obtained as

N�r,E� = N0�Re�g�	n,k,r��i	n→E+i��	k. �12�

III. STRUCTURE OF ORDER PARAMETER
AND MASS CURRENT

We start to discuss the structure of the pair potential. Fig-
ures 1�b� and 2 present self-consistent results for spatial
structures of MH vortex lattice at T=0.9Tc and �
=0.004�0, where intervortex distance is about 40R0. R0 is in
the order of coherence length. Around MH↑ vortices at A and
B with phase winding �w+ ,wz ,w−�= �0,1 ,2� around each
vortex center, ��z��r and ��−��r2 as a function of the radius
r from the vortex center. Since ��+��0 at the vortex center,
these vortices are coreless vortices with positive lz �see Fig.
1�b�
. The other two MH↓ vortices at C and D with phase
winding �w+ ,wz ,w−�= �2,1 ,0� around each vortex center are
also coreless vortices but with negative lz since ��−��0 at the
vortex center.

In our calculation, as dipole length7,8 is infinity, the vortex
core radius is in the order of intervortex distance, even
changing �. This is a character of coreless vortex. In con-
trast, if we calculate the vortex structure in a single compo-
nent �for example, if we set �+=�−=0�, the core radius of
the singular vortex is small, i.e., in the order of coherence
length. The pair amplitude ��r� in Fig. 2�d� is almost con-
stant but it is slightly suppressed at vortex core in the self-
consistent calculations. This suppression of ��r� is stronger
at MH↑ of positive lz at A and B, compared with MH↓ of
negative lz at C and D, which is closely related to the exis-
tence of low-lying excitations in MH↑, not in MH↓, as dis-
cussed later. We note that the differences of MH↑ and MH↓

FIG. 2. �Color� Spatial structure of order parameters �a� ��+�r��,
�b� ��−�r��, �c� ��z�r��, and �d� pair amplitude ���r� within a unit
cell, obtained by self-consistent Eilenberger theory. �=0.004�0

and T=0.9Tc. MH↑ vortices A and B are located at maximum of
��+�r��, and MH↓ vortices C and D are located at minimum of
��+�r�� in �a�.

FIG. 3. �Color� Spatial structure of �a� l vector, and �b� current j
within a unit cell, obtained by self-consistent Eilenberger theory.
�=0.004�0 and T=0.9Tc. Arrows indicates vectors �lx , ly� or
�jx , jy�, and color densities are for lz or jz.

FIG. 4. �Color� �a� Local spectrum N�r ,E� of quasiparticle
states at vortex center of MH↑ �B in Fig. 1�, vortex center of MH↓
�D�, and midpoint between vortices �O�. �b� Zero-energy LDOS
N�r ,E=0� within a unit cell. �=0.004�0 and T=0.9Tc.
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vortices come from the relative orientation of l vector and
the angular velocity of rotation. Since the angular velocity
points to z direction, the vortex windings at MH↑ vortex and
MH↓ vortex are both positive, and total vortex winding
around a unit cell in Fig. 1�c� is four ��0�. Therefore, l
vector is parallel to the angular velocity of rotation at the
vortex core of MH↑ with lz�0, and l vector is antiparallel to
the angular velocity at the vortex core of MH↓ with lz�0.

In Fig. 3�a�, we present the texture of the l vector around
the MH vortex. There, the direction of l vector rotates around
the coreless vortex, keeping almost constant pair amplitude.
Four vortices in a unit cell have different flow patters of l
vector. MH↑ and MH↓ have different sense of l vector’s 360°
rotation. The current flow j is presented in Fig. 3�b�. There,
amplitude of circular current is larger around MH↑, and small
around MH↓. In the MH vortex lattice, z component jz ap-
pears due to the so-called bending current by �� l.7,8 There,
jz flows with fourfold symmetric pattern around MH↓ while
jz is small around MH↑.

IV. QUASIPARTICLE STATES

Those MH↑ and MH↓ vortices exhibit a distinctive low-
lying excitation spectrum, depending on lz direction. Figure
4�a� presents local spectrum N�r ,E� at positions B �MH↑�, D
�MH↓� and O in the unit cell of Fig. 1�c�. Outside the vortex
core �line O�, we see typical DOS spectrum N�E��E2 for
anisotropic superconductors with point nodes.28 Even in the
bulk states without rotation, there are low-energy quasiparti-
cle states near E=0 due to the point node. Therefore, the
low-energy states shift to zero-energy state by vortex contri-
butions. At the vortex center of MH↑ �line B�, remarkably we
see sharp zero-energy peak even in a coreless vortex. This
peak structure is similar to that seen in singular vortex20,21

while the peak height is smaller. On the other hand, at MH↓
core �line D�, there is no distinctive peak structure around
E=0 in the vortex core region. These low-energy spectral
differences by lz directions are clearly seen in the zero-
energy LDOS N�r ,E=0� within a unit cell, as in Fig. 4�b�,
where we see the distinctive peaks at A and B positions,
corresponding to MH↑ vortex.

The difference between MH↑ vortex and MH↓ comes from
the relative orientation of l vector and rotational angular ve-
locity � of the rotation. Therefore, to see quantitative con-
tribution of the rotational speed, in Fig. 5 we plot � depen-
dence of N�r ,E=0� and ��r�1/2 at MH↑ vortex at B, MH↓
vortex at D and the midpoint O. In the limit �→0, we see
that N�r ,E=0�→0 and ��r� is uniform everywhere because
of coreless vortices. With increasing �, from ��0.001�0
we find the difference between MH↑ vortex at B and MH↓
vortex at D, coming from the relative lz direction to the ro-
tational angular velocity. When zero-energy states appears at
the vortex core, the pair amplitude ��r� is suppressed at the
core. The differences of vortices of B and D become eminent
toward the upper critical angular velocity �c2 ��0.3�0 at
T=0.9Tc�.

As shown by line B in Fig. 5�b�, around MH↑ vortices,
��+������ is significantly suppressed at ��0.04�0. There
two vortex-antivortex phase singularity appears in �+�r� at

the vortex core of MH↑. At the higher ���0.04�0�, the
vortex-antivortex phase singularities moves to around MH↑
vortices, and �� at vortex center B increases again. There,
basal plane component �lx , ly� of l vector is directed to oppo-
site direction between inside and outside around each MH↑
vortex at A and B.

V. BOGOLIUBOV-DE GENNES CALCULATIONS

In order to understand the fundamental difference in ex-
citation spectrum between two MH vortices MH↑ and MH↓,
we have performed the full quantum mechanical calculations
based on BdG theory, assuming a single vortex in a
system.13,29 To obtain quasiparticle eigenstates labeled by
�� ,kz� and eigenenergy E�,kz

, we solve the BdG equation30

� dr2�H0�r1,r2� 
�r1,r2�

��r1,r2� − H0�r1,r2� ��u�,kz

�r2�

v�,kz
�r2� �

= E�,kz�u�,kz
�r1�

v�,kz
�r1� � , �13�

where H0�r1 ,r2� is the kinetic energy term H0�r1 ,r2�=
−��r1−r2���1

2 /2m−EF� with the Fermi energy EF=kF
2 /2m.

The pair potential 
�r1 ,r2� is expanded to the Fourier series
with respect to the relative coordinate r1−r2 as


�r1,r2� =� dk

�2��3
�r,k�eik·�r1−r2�, �14�

where r= �r1+r2� /2 is the center-of-mass coordinate. Here,
we assume the coefficient 
�r ,k� to be expanded in terms of
the p-wave channel as


�r,k� =
1
�3

�
m=0,�1

�m�r��m�k�e−�k2−kF
2��p

2
�15�

with the factor �m�k� defined in Eqs. �3� and �4�. This is
same as the expression in Eq. �2�, except for the additional

factor e−�k2−kF
2��p

2
with the pairing size �p=kF

−1. This factor is
necessary for the BdG Eq. �13� to be Hermitian.30

Since z dependence of the pair potential is uniform, we
can set the wave function as

FIG. 5. �Color online� � dependence of �a� zero-energy LDOS
N�r ,E=0� and �b� pair amplitude �1/2�r� at positions B �vortex
center of MH↑�, D �vortex center of MH↓�, and O �midpoint be-
tween vortices�. Horizontal axis for � is log scale.
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�u�,kz
�r�

v�,kz
�r� � = �ũ�,kz

�r�

ṽ�,kz
�r� �eikzz. �16�

To reproduce the pair potential of MH vortex discussed in
previous sections, the order-parameter profiles are given by

��+,�0,�−� = 
0ei�
„e�i��1 � cos �� ,

�2 sin �, e�i��1 � cos ��…

with ��r�=�r /2R for MH↑ and MH↓, respectively.17 From
wave functions and eigenenergies obtained by the BdG equa-
tion, we calculate the LDOS N�r ,E� as

N�r,E� = �
kz

N�r,kz,E� = �
�,kz

�u�,kz
�r��2��E − E�,kz

� . �17�

Here, N�r ,kz ,E� is kz-resolved LDOS and the energy is pre-
sented in a unit of the gap amplitude’s constant 
0.

At fist sight we expect no difference between MH↑ and
MH↓ because here we assume that the pair amplitude ��r� is
identical. The MH vortex is almost the A phase like every-
where and coreless. However, when we see the LDOS
N�r ,E� by BdG theory shown in Fig. 6�a�, zero-energy peak
appears at the vortex core of MH↑, and it does not exist at
MH↓ vortex. This quasiparticle structure is consistent to the
result of Fig. 4 by Eilenberger theory. The small suppression
of ��r� obtained by self-consistent calculation in Sec. III is a
result from the low-energy quasiparticle states N�r ,E�.

To discuss the origin of zero-energy LDOS, N�r ,E� is
decomposed to contributions from each kz on the Fermi sur-
face. The kz-resolved LDOS N�r ,kz ,E� at the vortex core for

MH↑ and MH↓ are displayed in Fig. 6�b�. There, distinctive
zero-energy peak only for MH↑ grows as �kz� increases, indi-
cating that the low-energy excitations come from near the
poles of the Fermi sphere. In contrast, there is no peak inside
the gap for MH↓. The physical reason is due to the interplay
between IAM and vortex-winding number: �w+ ,wz ,w−�
= �0,1 ,2� for MH↑ and �2,1,0� for MH↓. The IAM has the
phase winding �u+ ,uz ,u−�= �1,0 ,−1� around the Fermi sur-
face for each pairing component ��+ ,�z ,�−�.

To discuss the possibility of low-energy bound states at
the vortex core, we consider effective pair potential for qua-
siparticles around vortex cores. The quasiparticles propagat-
ing to the angular direction around a vortex feel effective
pair potential 
�r ,k� with �k→�+� /2. For MH↑,
�
�r ,k��k→�+�/2�2=6�
0��sin2 
k+sin2 � cos2 
k� is an in-
creasing function of r, and quasiparticles feel larger confine-
ment potential at vortex when �kz����cos 
k�� is larger. This is
the origin of zero-energy peak in the LDOS coming from
near poles of the Fermi sphere. On the other hand, for MH↓,
�
�r ,k��k→�+�/2�2 = 6�
0��sin2 
k − 1

2sin 2� sin 2� sin 2
k

+sin2 ��cos2 
k−sin2 2� sin2 
k��. This effective pair poten-
tial breaks circular symmetry and does not have minimum at
vortex center. This implies no bound states inside the gap for
MH↓, as shown in right side of Fig. 6�b�. In essence this
interplay between IAM and vortex winding yields the fol-
lowing algebra symbolically for the phase factors:
�w+ ,wz ,w−� + �u+ ,uz ,u−� = �0,1 ,2�+ �1,0 ,−1� → �1,1 ,1�
+ �0,0 ,0� for MH↑ while �2,1 ,0�+ �1,0 ,−1�→ �1,1 ,1�
+ �2,0 ,−2� for MH↓. The former �0,0,0� gives rise to a vortex
bound state similar to the singular hard core vortex form by
Caroli-de Gennes-Matricon �CdGM� �Ref. 31� while the lat-
ter �2,0 ,−2� yields the angle-dependent escaping form ei2�

+e−i2�� cos 4�.
As for the problem whether the zero-energy quasiparticles

at MH↑ is Majorana state or not, the energy level of this state
is slightly lifted to positive energy in the order of 
2 /EF in
the BdG theory �EF is Fermi energy�, as shown in Fig. 6�a�.
This is a character of CdGM states31,32 and also confirmed by
the energy distribution of discretized eigenenergy, roughly
given as �n+ 1

2 �
2 /EF with integer n, obtained from the BdG
equation. That is, this CdGM state is not Majorana state
which should exist exactly at E=0.13,29 This is understand-
able from the vortex winding of each pairing component. For
the Majorana state to appear, the chiral components of p�

should have odd winding number.29 However, for MH↑,
winding �w+ ,wz ,w−�= �0,1 ,2� does not satisfy this criterion.

VI. SUMMARY AND DISCUSSIONS

In summary, we have studied the detailed spatial structure
of Mermin-Ho vortex lattice state in A phase of superfluid
3He, as a representative and concrete example of the skyr-
mion lattice. In Mermin-Ho vortex lattice, there are two
types of vortices; MH↑ with positive lz and MH↓ with nega-
tive lz. The differences between MH↑ vortex and MH↓ vortex
among the Mermin-Ho vortices come from the orientation of
the local intrinsic angular momentum l= �lx , ly , lz� at the vor-
tex core, i.e., parallel or antiparallel to the angular velocity of
rotation. Due to the orientation of l vector relative to the

FIG. 6. �Color� LDOS N�r ,E� �a� and kz-resolved LDOS
N�r ,kz ,E� �b� at the vortex center r=0 of MH↑ and MH↓ in the BdG
theory. T=0, R=40kF

−1, and kF�=10. MH↑ has a low-energy peak
�assigned by arrow� inside the gap. In �b�, gapedge narrows toward
kz=kF because point nodes situate at north and south poles at kz

= �kF on the Fermi sphere.
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rotation, Mermin-Ho vortices have different structures. By
self-consistent Eilenberger theory we clarified how the in-
trinsic angular momentum effect of local l orientation ap-
pears in the structure of order parameters, current flow and
quasiparticle states around coreless Mermin-Ho vortex
states. These effects depending on the local lz orientation
become eminent with increasing angular velocity of rotation.
The different current flows �jx , jy , jz� between MH↑ and MH↓
can be used to distinguish two types of vortices in the MH
vortex lattice. It is noted that zero-energy states appear at the
coreless vortex of positive lz only. These properties of qua-
siparticle states were also confirmed by our calculation of
Bogoliubov-de Gennes theory. The differences of low-energy
states between MH↑ and MH↓ are interesting also in the re-
lation to the dissipation mechanism at the vortex core. It may
be detected by magnetic resonance imaging �MRI�
technique,33 which is to probe Fermionic excitations locally.
In the MRI technique, the local position of the signal can be
identified by the analysis of resonance fields under the gra-

dient of the applied magnetic field. After the position of the
Mermin-Ho vortex is identified, the local low-energy quasi-
particle states are measurable by the relaxation experiment of
NMR at the resonance field. If the vortex has zero energy
quasiparticle states, we expect rapid relaxation at the vortex
core. We expect that among two types of Mermin-Ho vorti-
ces, one of them �MH↑� has rapid relaxation of NMR at the
vortex core, and the other MH↓ has only slow relaxation. The
present study prompts us to explore other topological objects
in condensed-matter systems, such as MnSi and Fe1−xCoxSi
where a similar skyrmion lattice is realized.5,6 Their elec-
tronic structure may be quite interesting. The local structure
of skyrmion can be different depending on the relative ori-
entation of applied fields.
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